2015年1月28日 中日本高速道路株式会社 定例記者会見 資料2

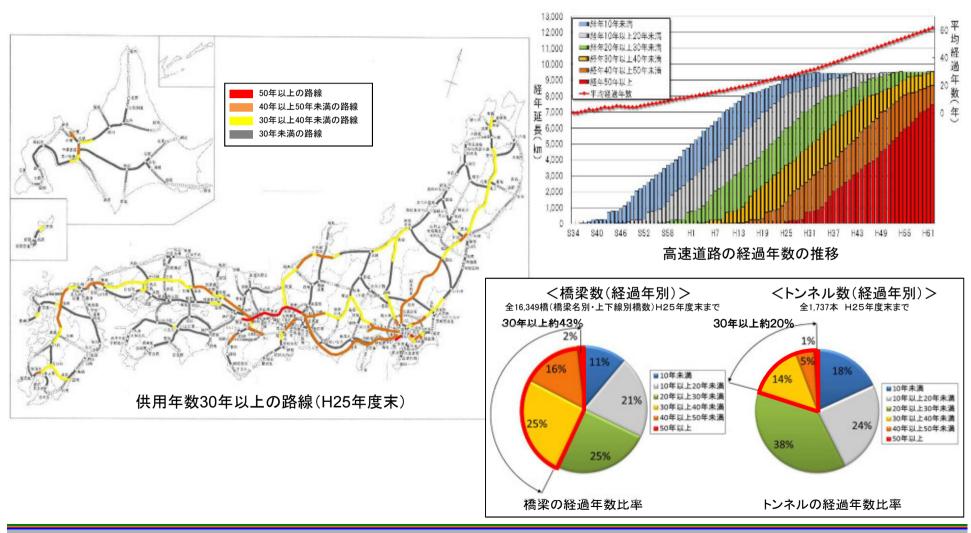
2015.1.15社会資本整備審議会 道路分科会 国土幹線道路部会 説明資料抜粋

東・中・西日本高速道路の更新計画について

平成27年 1月15日 NEXCO東日本 NEXCO中日本 NEXCO西日本

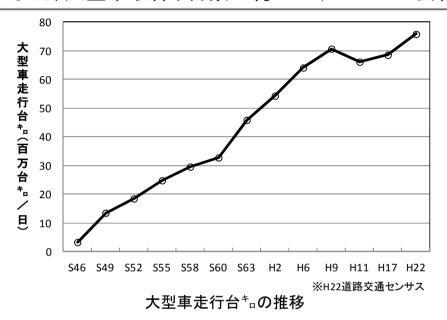
東・中・西日本高速道路の更新計画 検討経緯

- 〇 H24.11.7 「高速道路資産の長期保全及び更新のあり方に関する技術検討委員会」設立 (以下、「長期保全等検討委員会」)
- (〇 H24.12.2 中央自動車道笹子トンネル(上り線)天井板落下事故発生)
- H25.4.25 長期保全等検討委員会「中間とりまとめ」公表 高速道路の各構造物の変状状況から、劣化要因を整理し、大規模更新・大規模修繕の 必要要件について取りまとめ
- H25.4.26 国土幹線道路部会へ「中間とりまとめ(要旨)」を報告 長期保全等検討委員会の中間とりまとめを踏まえ、検討内容および大規模更新・大規模 修繕の規模感について会社から報告
- 〇 H26.1.22 長期保全等検討委員会「提言」


東・中・西日本高速道路の「大規模更新・大規模修繕計画(概略)」の公表 老朽化の進展並びに厳しい使用環境により、著しい変状発生が顕在化していることを踏ま え、構造物の変状状況や劣化要因などから大規模更新・大規模修繕が必要となる構造物 の要件を抽出。

長期保全等検討委員会提言を踏まえ、大規模更新・大規模修繕の事業規模を公表

- 〇 H26.2.7 国土幹線道路部会への報告 高速道路各社の更新計画(概略)の内容について報告
- 今 回 更新計画の審議 更新計画(概略)の内容について精査 ⇒ 国土幹線道路部会において審議


高速道路の現状と課題(1/3)

- 供用延長9,000kmのうち、供用から30年以上経過した延長が約4割(3,700km)。
- 橋梁やトンネルなどの構造物についても、30年以上経過している延長が橋梁で約4割、 トンネルで約2割を占めており、経年劣化のリスクの高まりが懸念される。

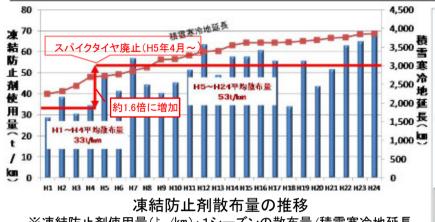
高速道路の現状と課題(2/3)

○ 大型車交通が増加するとともに、車両諸元に関する規制緩和により車両の総重量が増加傾向。 また、大型車取締り台数の約25%(NEXCO3会社調べ)が総重量等を超過している違反車両。

40,000 24.5% 25.6% 24.6% 35,000 32,273 31,783 31.141 20.0% 30,000 25.000 10.0% 取締り(検問)台数 20,000 違反車両台数 ·違反重率(%) 15,000 10,000 ,919 ,667 5,000 大型車両取締り台数に占める違反車両割合

大型車両の増加

【違反者に対するNEXCO3会社の主な措置内容】

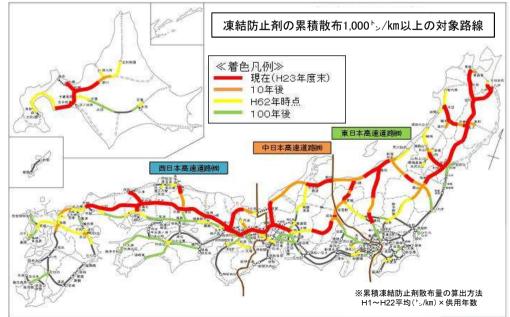

- 他の道路管理者等と連携した取締り推進
- 「車両制限令講習会」の実施、再度違反を繰り返す事業者に対しては、 「大口・多頻度割引」の割引停止措置

<道路の老朽化対策に向けた大型車両通行の適正化方針(H26.5)に基づく強化策>

- 特に常習的、悪質な重量違反等に対して、関係機関と連携した「即時告発や厳格な措置命令(積載物の減載など)の実施」、「違反者講習会のさらなる強化」等について検討調整中
 - 「连及台碑自女のでりよる選心」 ずに ング で探り過せ
- 自動計測装置などを活用した違反者への指導の検討

高速道路の現状と課題(3/3)

○ 積雪寒冷地の供用延長の増加やスパイクタイヤ廃止(H5年4月~)の影響による凍結防止 剤(塩化ナトリウム)使用量の増加、短時間異常降雨の増加など厳しい使用環境。



変状グレードの分布(床版(鋼床版除く)) • II 500t/lm未満 500~1,000 t/lm 1,000 t/lm以上 累積凍結防止剤散布量(t/kn) 凍結防止剤散布量が累積1,000t/kmを超過している 場合は、健全度の低下が顕著

※凍結防止剤使用量(ド、/km):1シーズンの散布量/積雪寒冷地延長

短時間異常降雨の影響



海岸線通過路線の厳しい自然環境

構造物の変状状況(橋梁)

○ 経過年数の増加に伴う老朽化の進展、並びに厳しい使用環境により著しい変状が顕在化。

橋梁(鉄筋コンクリート床版)の主な変状

構造物の変状状況(土構造物・トンネル)

○ 旧基準の設計・施工による影響や地盤材料の風化・劣化などによる変状が発生。

大規模更新・大規模修繕計画の基本的な考え方

■ 対策が必要となる箇所

〇 構造物の劣化要因から要対策箇所を選定

構造物の点検結果および変状分析から構造物が持つ潜在的な劣化要因を把握し、要対 策箇所を選定

・経過年数の増加による老朽化、大型車交通量の増加・凍結防止剤の影響など厳しい使用環境、 地盤材料の風化・劣化などの地盤特性、古い設計基準で設計された構造物など

■ 効果的な対策工法

〇 長期にわたる耐久性の確保

構造物の劣化要因により抽出した構造物に対して、最新の技術的知見及び技術基準の 適用により、更新または予防保全の観点も踏まえた修繕を行い、長期耐久性を向上させ、 将来にわたって高速道路ネットワークの機能を確保

- ・プレストレストコンクリート床版や防水機能の高い材料(高性能床版防水)の使用など
- 重量超過車両に対する取締りの徹底や指導の強化

■ 事業の実施における考え方

〇 構造物の変状の進展に応じた更新計画の定期的な見直し

定期的に構造物の変状を的確かつ詳細に把握することにより、変状状況に応じて常に最適な計画となるよう適宜見直しを実施

○交通への影響軽減

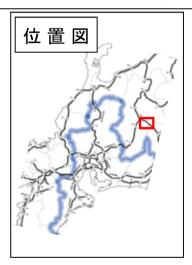
既供用路線の通行止めなど、工事による交通への影響軽減

・プレキャスト製品の使用による工期短縮やネットワーク完成後の工事着手など

東・中・西日本高速道路の更新計画

- NEXCO3会社が管理する高速道路は、経過年数の増加とともに老朽化が進展、並びに厳しい使用環境により、著しい変状が顕在化。
- これまで実施してきた従来の修繕のみでは、重大な変状に進展し、通行止等が発生する おそれがある。
- ○このため、重大な変状に進展するおそれがある延長2,109kmについて、大規模更新・ 大規模修繕を実施する箇所として選定。

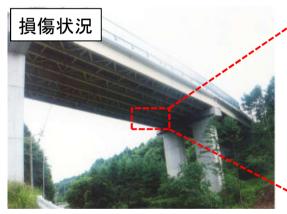
分類	区分	項目	主な対策	対策箇所	延長※1	事業費※2
大規模更新	橋梁	床版	床版取替	中央自動車道 小早川橋 など	224km	16,429億円
		桁	析の架替	阪和自動車道 松島高架橋 など	13km	1,039億円
	小 計				237km	17,468億円
大規模修繕	橋梁	床版	高性能床版防水 など	東北自動車道 宮麓橋 など	359km	1,601億円
		桁	析補強 など	東名高速道路 朝比奈川橋 など	151km	2,628億円
	土構造物	盛土・切土	グラウンドアンカー 水抜きボーリング など	中国自動車道 美祢IC〜美祢西IC間 など	1,231km	4,775億円
	トンネル	本体·覆工	インバート など	北陸自動車道 米山トンネル など	131km	3,593億円
	小 計				1,872km	12,597億円
合 計					2,109km	30,064億円


※1 上下線別及び連絡等施設を含んだ延べ延長(全体約20,000km)

※2 端数処理の関係で合計が合わない場合がある

大規模更新の実施方法(中央自動車道 小早川橋)

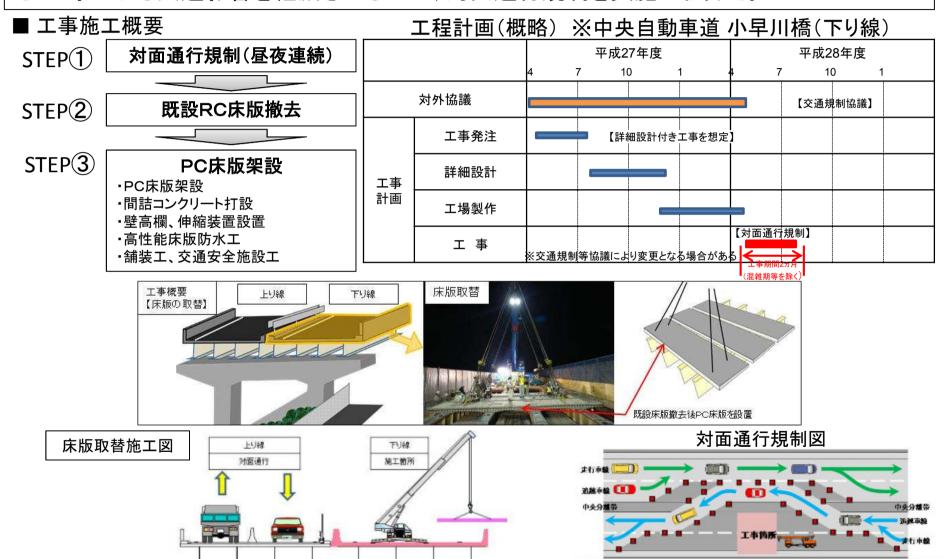
鉄筋コンクリート床版のプレストレストコンクリート床版への取替


- 〇小早川橋(長野県)【下り線、橋長132m、昭和56年開通、33年経過】 中央自動車道 諏訪南IC~諏訪IC
- 重交通(H25年 29,000台/日平均)による床版の疲労に加え、冬期に凍結防止剤(塩化ナトリウム)を散布していることに起因する塩害が発生。
 - ⇒ 床版増厚や部分打換えなどの補強、補修を繰返し実施しているが、架橋から約35年が 経過し、通常の修繕ではコンクリート床版のひび割れや剥離などが進行

これまでの補修状況

○床版増厚などの部分的補修等を繰返し実施 ・H10年 床版増厚+床版防水工

·H18年 舗装補修+床版防水工



大規模更新の実施方法(中央自動車道 小早川橋(長野県))

- 鉄筋コンクリート床版をより耐久性が高いプレストレストコンクリート床版に取替え。
- 工事による交通影響を軽減させるため、対面通行規制を実施し取替え。

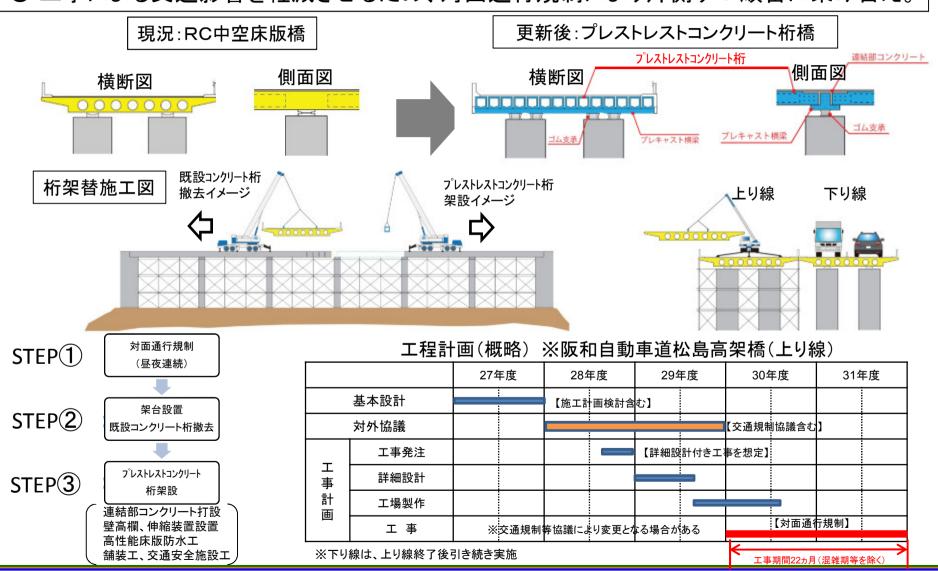
大規模更新の実施箇所の概要(阪和自動車道 松島高架橋)

鉄筋コンクリート桁のプレストレストコンクリート桁への架替

- 〇松島高架橋(和歌山県)【上下線、橋長518m、昭和49年開通、40年経過】 阪和自動車道 和歌山北IC~和歌山IC
- 高度経済成長期の建設需要の増大に伴い、コンクリートの骨材として用いる河川砂が枯 渇し、やむなく海砂を使用したことにより塩害が発生していることに加え、重交通(H25年度 33,000台/日平均)による疲労の影響を受けている。
 - ⇒ 繰返し損傷を受けている箇所の部分的補修を実施しているが、架橋から約40年が経過 し、通常の修繕ではコンクリートの剥離や鉄筋露出、土砂化が進行

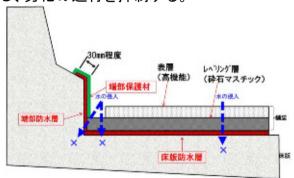
これまでの補修状況

- ○損傷筒所の補修等を繰返し実施
 - ·H 4年 床版上面增厚+床版防水工
 - ·H17年 床版上面打換+床版防水工
 - •H21年 床版上面断面補修+床版防水工

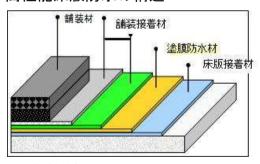

床版上面部分打替の状況

大規模更新の実施方法(阪和自動車道 松島高架橋(和歌山県))

- 鉄筋コンクリート桁をより耐久性が高いプレストレストコンクリート桁へ架け替え。
- 工事による交通影響を軽減させるため、対面通行規制により片側ずつ順番に架け替え。



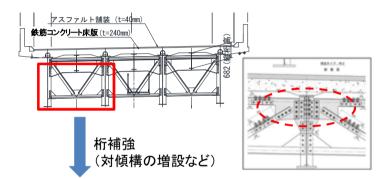
大規模修繕工事(橋梁)の代表事例


- ○老朽化の進展、凍結防止剤や飛来塩分による塩害、重交通による疲労などの影響による変状が発生。
 - ⇒ 橋梁の上部構造(床版、桁)で計画的かつ大規模な修繕を実施することにより、変状の進行や新たな変状の発生を抑制

高性能床版防水

・床版を劣化させる路面からの水、塩化物イオンのコンクリートへの浸透を遮断し、劣化の進行を抑制する。

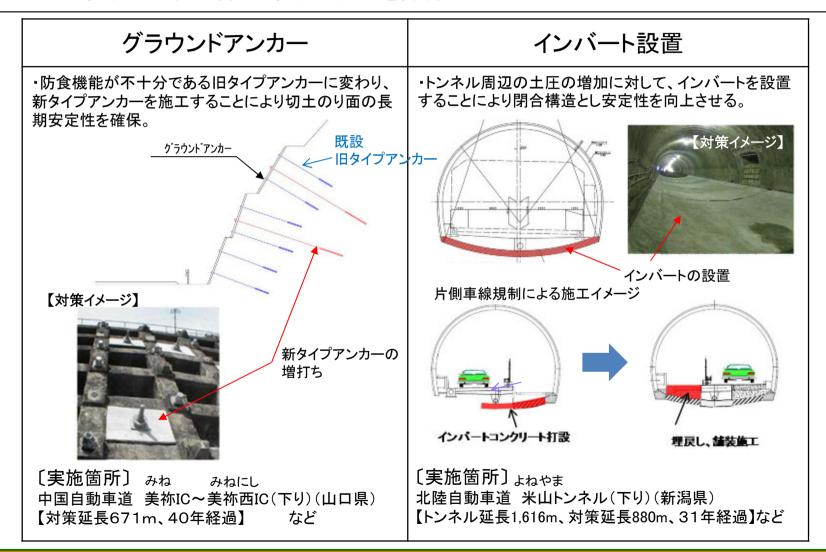
高性能床版防水の構造



〔実施箇所〕 みゃふもと 東北自動車道、宮麓橋(秋田県) 【橋長49m、31年経過】 など

桁補強

・鋼橋の疲労き裂に対して、補強部材により車両走行に 伴う応力集中の緩和および低減を図る。


増設した対傾構

補強部材の取り付け

〔実施箇所〕_{あさひながわ} 東名高速、朝比奈川橋(静岡県) 【橋長168m、45年経過】 など

大規模修繕工事(土構造物、トンネル)の代表事例

- 旧基準の設計・施工による影響や地盤材料の風化・劣化の影響による変状が発生。
- ⇒ のり面全体又はトンネル全体の長期安定性を確保するため、計画的かつ大規模な修繕を実施する ことにより、変状の進行や新たな変状の発生を抑制

今後の更新事業の進め方・検討課題

- 高耐久性に配慮した構造への更新、工期短縮、コスト削減
 - ⇒ 調査研究および技術開発の推進
- 通行規制に伴う社会的影響の軽減
 - ⇒ 高速道路ネットワーク(迂回機能)を活用した影響の軽減、迂回道路となる一般道への 影響および工期短縮のための工法開発など、通行規制に伴う社会的影響を軽減する ための方策を検討
- 〇 構造物の変状の的確かつ詳細な把握
 - ⇒ 道路法改正(H25.6)に伴う省令に対応した点検強化、および点検の高度化を推進
- 〇 事業効果を更に高めるために必要な課題への対応など
 - ⇒ 中央道笹子トンネル天井板落下事故の教訓は、適切かつ確実に維持管理・更新サイクルへ反映。あわせて、点検の信頼性向上に向けた取組みを推進
 - ⇒ 体制の強化、人材の確保・育成
 - ⇒ 重量超過車両に対する取締りの徹底や指導の強化
 - ⇒ 高速道路跨道橋の適切な維持管理(点検・補修)のための協議・調整